13 research outputs found

    Revisiting Random Utility Models

    Get PDF
    This thesis explores extensions of Random Utility Models (RUMs), providing more flexible models and adopting a computational perspective. This includes building new models and understanding their properties such as identifiability and the log concavity of their likelihood functions as well as the development of estimation algorithms.Engineering and Applied Science

    Computing parametric ranking models via rank-breaking. In

    Get PDF
    Abstract Rank breaking is a methodology introduced by Azar

    Generalized Random Utility Models with Multiple Types

    Get PDF
    We propose a model for demand estimation in multi-agent, differentiated product settings and present an estimation algorithm that uses reversible jump MCMC techniques to classify agents' types. Our model extends the popular setup in Berry, Levinsohn and Pakes (1995) to allow for the data-driven classification of agents' types using agent-level data. We focus on applications involving data on agents' ranking over alternatives, and present theoretical conditions that establish the identifiability of the model and uni-modality of the likelihood/posterior. Results on both real and simulated data provide support for the scalability of our approach.EconomicsEngineering and Applied SciencesMathematic

    Generalized Method-of-Moments for Rank Aggregation

    Get PDF
    In this paper we propose a class of efficient Generalized Method-of-Moments(GMM) algorithms for computing parameters of the Plackett-Luce model, where the data consists of full rankings over alternatives. Our technique is based on breaking the full rankings into pairwise comparisons, and then computing parameters that satisfy a set of generalized moment conditions. We identify conditions for the output of GMM to be unique, and identify a general class of consistent and inconsistent breakings. We then show by theory and experiments that our algorithms run significantly faster than the classical Minorize-Maximization (MM) algorithm, while achieving competitive statistical efficiency.Engineering and Applied SciencesStatistic

    A Statistical Decision-Theoretic Framework for Social Choice

    Get PDF
    In this paper, we take a statistical decision-theoretic viewpoint on social choice, putting a focus on the decision to be made on behalf of a system of agents. In our framework, we are given a statistical ranking model, a decision space, and a loss function defined on (parameter, decision) pairs, and formulate social choice mechanisms as decision rules that minimize expected loss. This suggests a general framework for the design and analysis of new social choice mechanisms. We compare Bayesian estimators, which minimize Bayesian expected loss, for the Mallows model and the Condorcet model respectively, and the Kemeny rule. We consider various normative properties, in addition to computational complexity and asymptotic behavior. In particular, we show that the Bayesian estimator for the Condorcet model satisfies some desired properties such as anonymity, neutrality, and monotonicity, can be computed in polynomial time, and is asymptotically different from the other two rules when the data are generated from the Condorcet model for some ground truth parameter.Engineering and Applied Science

    Random Utility Theory for Social Choice

    No full text
    Random utility theory models an agent’s preferences on alternatives by drawing a real-valued score on each alternative (typically independently) from a parameterized distribution, and then ranking the alternatives according to scores. A special case that has received significant attention is the Plackett-Luce model, for which fast inference methods for maximum likelihood estimators are available. This paper develops conditions on general random utility models that enable fast inference within a Bayesian framework through MC-EM, providing concave loglikelihood functions and bounded sets of global maxima solutions. Results on both real-world and simulated data provide support for the scalability of the approach and capability for model selection among general random utility models including Plackett-Luce.
    corecore